MODEL PAPER_CBSE-XII'20

According to the Syllabus \& Guide Lines for CBSE'20
CLASS-XII (2019-2020)
QUESTION WISE BREAK UP

GENERAL INSTRUCTIONS:

(i) All questions are compulsory.
(ii) This question paper contains 36 questions.
(iii) Question 1-20 in Section A are very short-answer type questions carrying 1 mark each.
(iv) Question 21-26 in Section B are short-answer type questions carrying 2 marks each.
(v) Question 27-32 in Section C are long-answer-I type questions carrying 4 marks each.
(vi) Question 33-36 in Section D are long-answer-II type questions carrying 6 marks each.

SECTIONS - A (Questions 01 to 20 carry 1 marks each)

1. If $x>1$, then find $\tan ^{-1}\left(\frac{1+x}{1-x}\right)$.
2. Write a 3×3 skew symmetric matrix.
3. If $\vec{a}=\hat{i}+\hat{j}+4 \hat{k}, \vec{b}=\hat{i}+\hat{j}+\hat{k}, \vec{c}=\hat{i}+\hat{k}$, find a vector of magnitude 9 units in the direction of the vector $\vec{a}+\vec{b}+\vec{c}$.
4. Father, mother and son stand at random in a line in a family picture. E. Son is on one end, F: Father is in middle. Then $P(E / F)=$
5. In a linear programming problem, the constraints are given by $x+y \geq 9,3 x+5 y \leq 15, x, y \geq 0$, Given objective function is $Z=3 x+2 y$. Can there exist any feasible solution of this problem.
6. Let * be a binary operation on the set of non-zero real numbers given by $\mathrm{a} * \mathrm{~b}=\frac{\mathrm{ab}}{5} \quad \forall \mathrm{a}, \mathrm{b} \in \mathrm{R}-\{0\}$.

Find x , given that $2 *(\mathrm{x} * 5)=10$.
7. Given $\mathrm{P}(\mathrm{A})=\frac{3}{5}$, and $\mathrm{P}(\mathrm{B})=\frac{1}{5}$. If A and B are two independent event, then find $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$.
8. Evaluate : $\int \sec ^{2}(3-5 x) d x$.
9. Find the ratio in which YZ-plane divides the line segment joining the points $\mathrm{P}(-2,5,9)$ and $\mathrm{Q}(3,-2,4)$
10. Evaluate: $\int \tan ^{-1}\left(\frac{\tan x+\sqrt{3}}{1-\sqrt{3} \cdot \tan x}\right) d x$ Given $\left.0<x<\frac{\pi}{2}\right]$

OR, Evaluate :

$$
\int \frac{d x}{x+x \cdot \log _{e} x}
$$

11. If $\left[\begin{array}{cc}x-y & z \\ 2 x-y & w\end{array}\right]=\left[\begin{array}{cc}-1 & 4 \\ 0 & 5\end{array}\right]$, find $(x-y)$
12. A function is defined as follows:

$$
\begin{aligned}
f(x) & =x+1 \quad \text { when } x \leq 1, \\
& =3-\mathrm{ax}^{2} \quad \text { when }>1 .
\end{aligned}
$$

Find the value of a for whieh $f(x)$ will be continuous at $x=1$?
13. Write the sum of the order and degree of the differential equation $1+\left(\frac{d y}{d x}\right)^{4}=7\left(\frac{d^{2} y}{d x^{2}}\right)^{3}$.
14. Find the maximum value of $\mathrm{x}^{3}-9 \mathrm{x}^{2}+24 \mathrm{x}-12$.

OR, State the condifions for maxima and minima of a function $y=f(x)$ at a point where $\frac{d^{2} y}{d x^{2}} \neq 0$.
15. Write the projection of $(2 \hat{i}+3 \hat{j}-\hat{k})$ along the vector $(\hat{i}+\hat{j})$.

OR, If \vec{a} and \vec{b} are unit vectors, then what is the angle between \vec{a} and \vec{b}, so that $(\sqrt{2} \vec{a}-\vec{b})$ is a unit vector?
16. A is a matrix of order 3×3. Given $|A|=15$, then find the value of $|5 \mathrm{~A}|$. has a determinant 15 . What is the value of $|5 \mathrm{~A}|$?
17. If $f(x)=\int_{0}^{x} \theta \cdot \sin \theta d \theta$, then determine the value of $f^{\prime}(x)$.
18. Given, $(2 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+13 \hat{\mathrm{k}}) \times(\hat{\mathrm{i}}-\lambda \hat{\mathrm{j}}+6 \hat{\mathrm{k}})=\overrightarrow{0}$. Find λ.
19. Find the integrating factor of the differential equation
$(x \log x) \frac{d y}{d x}+y=2 \log x$
20. Write the adjoint of the matrix $\left(\begin{array}{cc}3 & -1 \\ 4 & 2\end{array}\right)$.

SECTIONS - B (Questions 21 to 26 carry 2 marks each.)

21. Solve for $\mathrm{x}: \sin ^{-1} \cos \sin ^{-1} x=\frac{\pi}{3}$. $\mathrm{x} \in\left(0, \frac{\pi}{2}\right)$

OR, Prove that, $\tan ^{-1}\left(\frac{c_{1} x-y}{c_{1} y+x}\right)+\tan ^{-1}\left(\frac{c_{2}-c_{1}}{c_{2} c_{1}+1}\right)+\tan ^{-1}\left(\frac{c_{3}-c_{2}}{c_{3} c_{2}+1}\right)+\cdots+\tan ^{-1}\left(\frac{1}{c_{20}}\right)=\tan ^{-1}\left(\frac{x}{y}\right)$
22. Given, $f(x)=\left\{\begin{array}{ll}3 a x+b, & x>1 \\ 11, & x=1 \\ 5 a-2 b, & x<1\end{array}\right.$. If $f(x)$ is continuous at $x=1$, find the values of a and b.
23. Use differential to approximate $\sqrt{25.5}$

OR, The radius of a sphere is measured as 9 cm with an error 0.03 cm . Find the approximate error in calculating its volume.
24. Write the direction cosines of the normal to the plane $3 x+4 y+12 z 0-52=0$.
25. Show that the line through the points $(1,-1,2)(3,4,-2)$ is perpendicular to the line through the points $(0,3,2)$ and $(3,5,6)$.
26. If a leap year is selected at random, what is the chance that it will contain 53 Tuesdays ?

SECTIONS - C (Questions 27 to 32 carry 4 marks each.)

27. Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ be a function defined as $f(x)=4 x^{2}+12 x+15$. Show that $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{S}$ is invertible (where S is the range of f), Find the inverse of f. Find $f^{-1}(31)$.
28. Find the derivative of $(\sin x)^{*}+\sin ^{-1} \sqrt{x}$ w.r.t x.

OR, If $y=\frac{1}{1+x+x^{2}+x^{3}}$ then prove that $\left(\frac{d^{2} y}{d x^{2}}\right)_{x=0}=0$
29. Find the particular solution of the differential equation $\left(1-y^{2}\right)(1+\log x) d x+2 x y d y=0$, given $\mathrm{y}=0$ when $\mathrm{x}=1$.
30. Evaluate :

$$
\int_{\frac{\pi}{6}}^{\overline{3}} \frac{\mathrm{dx}}{1+\sqrt{\cot \mathrm{x}}}
$$

31. Probability of solving specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. They try to solve the problem independently, find the probability that, (i) the problem is solved, (ii) exactly one of them solve the problem.
OR, From a set of 100 cards numbered 1 to 100 , one card is drawn at random. Find the probability that the number on the card is divisible by 6 or 8 , but not by 24 .
32. Find graphically the maximum value of $Z=2 x+5 y$, subject to constraints given by $2 x+4 y \leq 8,3 x+y \leq 6, x+y \leq 4, x, y \geq 0$.

SECTIONS - D (Questions 33 to 36 carky 6 marks each)

33. Using properties of determinants, prove that, $\left(\left.\begin{array}{l}(a+1) \\ (a+2) \\ \text { OR Prove that }\left|\begin{array}{cc}1+a & 1 \\ 1 & 1+b \\ 1 & 1 \\ 1\end{array}\right|=a b q\end{array} \right\rvert\,+\frac{1}{a}+\frac{1}{b}+\left(\frac{b}{c}\right)\right.$.
34. Using integration, prove that the curves $y^{2}=4 x$ and $x^{2}=4 y$ divide the area of square bounded by $x=0$, $x=4, y=4$ and $y=0$ into three equal parts.
OR, Using integration, find the area of the region: $\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}$
35. Using calculus, prove that, the straight line $x+y=2+\sqrt{2}$ touches the circle $x^{2}+y^{2}-2 x-2 y+1=0$. Find the point of contact.
36. Find the Veetor and Cartesian equation of the planes that passes through the point $(1,0,-2)$ and the normal to the plane is $(\hat{i}+\hat{j}-\hat{k})$.

if he never had the opportunity to solve problems invented by himself .'

Paper by : | SAMIR KUMAR BASU |
| :--- |
| Basu-Niketan, Bonmasjid Para, |
| Burdwan, West Bengal, India |
| Pin- 713101 |
| e-mail: help@confinmath360.com |
| e-mail: $\boldsymbol{\text { confinmath360@gmail.com }}$ |
| Website: www.confinmath360.com |
| Blog : robinmath.blogspot.in |

